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A time domain numerical scheme is developed to solve for the 
unsteady flow about a flat plate airfoil due to imposed upstream, small 
amplitude, transverse velocity perturbations. The governing equation 
for the resulting unsteady potential is a homogeneous, constant coef- 
ficient, convective wave equation. Accurate solution of the problem 
requires the development of approximate boundary conditions which 
correctly model the physics of the unsteady flow in the far field. An 
accurate far field boundary condition is developed, and numerical 
results are presented using this condition. The stability of the scheme is 
discussed, and the stability restriction for the scheme is established as 
a function of the Mach number. Finally, comparisons are made with the 
frequency domain calculations by Scott and Atassi, and the relative 
strengths and weaknesses of each approach are assessed. c 1992 

Academac Press. Inc 

1. INTRODUCTION 

In recent years, due to the availability of large high speed 
computers and improvements in numerical algorithms, 
much progress has been made by computational fluid 
dynamicists. in the effort to solve unsteady aerodynamic 
flow problems. To date most numerical work in unsteady 
aerodynamics has concentrated on either potential or 
primitive variable methods. The early work goes back to the 
1970s when researches developed methods to solve the 
unsteady small disturbance potential equation for flows 
around oscillating airfoils or cascades. Later work concen- 
trated on solving the unsteady full potential equation or the 
linearized unsteady potential equation. Unsteady potential 
methods have proven to work well for oscillating airfoil 

* Research partially supported by NASA while the first author was 
visiting ICOMP, NASA Lewis Research Center and by the Ohio 
Supercomputer Center, Columbus, Ohio. 

problems, and much effort has been expended in their 
development. References [l-5] represent some of the work 
that has been done in this area. 

The biggest drawback associated with unsteady potential 
methods is that they are not suitable for the solution of vor- 
tical flow problems. Previous efforts to use the small distur- 
bance potential formulation to analyze unsteady vertical 
flows around airfoils have assumed that the upstream vor- 
ticity is convected at uniform speed and not distorted in any 
way by the gradients in the mean flow. McCroskey and 
Goorjian [6] and McCroskey [7] have reported such an 
approach, in which the well-known unsteady, transonic 
small-disturbance code LTRAN2 was modified to handle 
imposed sinusoidal vertical gusts. However, as shown by 
Goldstein and Atassi [S] and Atassi [9], the assumption 
that the gust is convected at uniform velocity and not dis- 
torted by the mean flow is only valid for flat plate airfoils. 
For airfoils with thickness, camber, or angle of attack, there 
are gradients in the mean flow which act to distort the 
structure of the convected vertical gust. The results of 
Goldstein and Atassi [S] and Atassi [9], as well as the 
recent numerical results of Scott [ 10, 111, have shown that 
the effects of mean flow distortion on the unsteady velocity 
field are very strong, and can lead to large changes in the 
unsteady solution. Since turbomachinery flow fields are 
characterized by strong mean flow gradients, any numerical 
scheme which is developed for these flow fields will not be 
accurate unless it takes into account the distortion of the 
convected upstream vorticity. 

More recently, with the increasing availability of faster 
and larger computers, researchers have been developing the 
so-called primitive variable methods in which the unsteady 
Euler or Navier-Stokes equations are solved in time along 
with certain specified boundary conditions. Whereas the 
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potential methods are essentially limited to oscillating air- 
foil problems, the primitive variable methods are equally 
well-suited to both oscillating airfoil and vertical flow 
problems. However, these methods suffer the disadvantage 
of being too expensive to use for routine engineering 
calculations such as are encountered in design work. In 
addition, and perhaps most importantly, uncertainties 
about physically correct far field boundary conditions and 
difficulties in resolving multiple time scales such as are 
encountered in high speed vertical flows leave some 
question as to the accuracy of the solutions. 

For many aerodynamic flows of practical interest, the 
unsteadiness in the llow arises due to the occurrence of 
small, upstream vertical disturbances (gusts) which are con- 
vected downstream and interact with an airfoil or cascade of 
airfoils. Since the time scale associated with these small 
amplitude disturbances is usually an order of magnitude 
greater than the time scale associated with the basic mean 
flow, the dominant unsteady effects in the flow will be due 
to the high speed convection of the upstream unsteady 
disturbances. For this kind of “weakly rotational” flow, 
it is possible to use an alternative to the nonlinear primitive 
variable approach known as the “rapid distortion approxi- 
mation.” Mathematically, this amounts to linearizing the 
unsteady Euler equations about the basic nonlinear steady 
flow field and then solving the resulting time linearized 
governing equations. 

Goldstein [ 123 and Atassi and Grzedzinski [ 133 have 
shown that for potential mean flows, it is possible to reduce 
the mathematical problem for the unsteady flow to solving 
a single, nonconstant-coefficient convective wave equation. 
Their formulation of the problem fully accounts for the dis- 
tortion of the convected upstream vorticity by the gradients 
in the nonuniform mean flow, and therefore represents a 
major improvement over the traditional unsteady potential 
formulation. 

Scott and Atassi [lo, 14, 151 have recently reported the 
development of a numerical scheme which implements this 
linearized approach for the purpose of solving unsteady vor- 
tical flows around lifting airfoils. Their method solves the 
problem in the frequency domain and has been validated for 
compressible subsonic flows for a large range of reduced fre- 
quencies. Their numerical scheme can also be used for the 
solution of irrotational flows such as are encountered in the 
oscillating airfoil problem. Because of the inherent efficiency 
of their linearized approach and its ability to correctly 
handle both vertical and non-vertical unsteady flows, their 
approach represents an attractive alternative to the 
potential and primitive variable methods for the solution of 
unsteady aerodynamic flow problems. 

An alternative to the frequency domain approach would 
be to solve the linearized problem using a time domain for- 
mulation, The time domain approach is of interest for a 
number of reasons. First, since the full nonlinear unsteady 

Euler equations are solved using time marching methods, 
there is considerable theoretical interest in the study of time 
marching methods to solve their linearized counterpart. 
Second, the development and analysis of far field boundary 
conditions for the linearized unsteady problem has a direct 
bearing on the use of far field boundary conditions for the 
nonlinear problem. Finally, for certain problems the time 
domain approach may offer some advantages over the 
frequency domain approach. For example, the frequency 
domain approach is limited to solving the gust response 
problem for a single frequency and then superposing solu- 
tions for more general disturbances in which multiple 
frequencies are present. For vertical disturbances that 
contain a large number of harmonics, many calculations 
would be necessary and the frequency domain approach 
would be inefficient. The time domain approach, however, 
could handle the multiple frequency case in a single calcula- 
tion and could possibly be more efficient in this case. 

Our major purpose in the present paper is to present a 
time domain numerical scheme for the solution of unsteady 
vertical flows around thin airfoils. The numerical procedure 
that we present is designed specifically for the linearized 
problem and is second-order accurate in both time and 
space. While it is possible to modify previous time domain, 
unsteady potential formulations, such as the one by 
Engquist and Osher [16], to apply to the present linear 
problem, we point out that these schemes were developed to 
solve the transonic small disturbance equation which is a 
nonlinear equation. Also, these schemes were designed to 
capture shocks and used appropriate upwinding techniques 
which would unnecessarily complicate the solution of 
the present linear problem. Since in the present approach 
the nonlinear mean flow is calculated tirst, and then the 
unsteady flow is determined as a first-order perturbation 
about the mean flow, it is not necessary to use a shock-cap- 
turing algorithm for the unsteady part of the problem. In 
addition, the numerical schemes that have been developed 
to solve unsteady potential flows are generally only first- 
order accurate in time, whereas the present approach is 
second-order accurate [ 1, 171. 

For simplicity, the numerical scheme which we present in 
this paper has been developed for the thin airfoil problem in 
which the mean flow is a uniform parallel flow. However, 
the extension of our method to flows with real geometry 
effects in which the mean flow is no longer uniform is 
relatively straightforward. In Section 2 we derive the 
linearized equations and formulate the boundary value 
problem for the special case of a thin airfoil. In Section 3 the 
far field boundary condition is derived, and in Section 4 the 
basic numerical scheme is presented. Section 5 discusses 
the details of the calculation of the unsteady response 
function, and in Section 6 we discuss computed numerical 
results and compare them with the results of Scott and 
Atassi as reported in [ 141. 



2. FORMULATION OF THE PROBLEM 

2.1. Derivation of Governing Equation 

The formulation that is presented here follows that given 
in the recent review paper of Atassi [18]. Consider the 
equations of fluid motion for an ideal gas which is inviscid 
and non-heat conducting. The governing continuity, 
momentum, and entropy equations may be written 
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where u1 satisfies 

v.u,=o 

and 

(;+wf-J u, =o. 

Using Eqs. (11) and (13) in (9) there results pr + v . (pv) = 0 (1) 

v,+(v.v)v+Jp=o (2) 

st+v.vs=o, (3) 

where p, v, p, and s are the fluid density, velocity, pressure, 
and entropy, respectively. 
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(12) 

(13) 

or 

This is a system of nonlinear equations. Since we assume 
that the upstream vertical disturbances are small compared 
to the mean velocity, we linearize about the mean flow state 
and introduce perturbation quantities as follows: Let where f( t) is an arbitrary function of t. At upstream infinity 

4, d,, and j vanish. From this we deduce that 
P=Po+Ed (4) 

v=v,+&U (5) 

P=Po+$ (6) 

s = sg + ET, (7) 

where E is small compared to the corresponding zeroth- 
order quantities that govern the mean flow whose density, 
velocity, pressure, and entropy are pO, vO, pO, and sO, 
respectively. 

Substituting (15) into (8) and using (11) one obtains 

(16) 

In the case of thin airfoils at zero mean incidence, the 
mean velocity is a uniform parallel flow in the x direction, 
so that vO = u,e,. The first-order asymptotic expansion 
(O(E)) is thus 

Equation (16) is the governing equation for the unsteady 
potential for the problem of small vertical disturbances to a 
uniform flow past a flat plate airfoil. 

The total velocity field v is given by 

Po(~+vo~)u= -vp 

v=v,e,X+u,+V& (17) 

We observe that once the potential field is determined, the 
pressure and the velocity are determined from Eqs. (15) and 
( 17), respectively. 

2.2. Boundary Conditions 

where c,, = JG is the acoustic speed. 
Following the traditional splitting of the unsteady 

velocity into solenoidal and irrotational components [ 181, 
let 

(10) Now consider the problem of flow past a flat plate airfoil 
at zero degrees mean incidence with small amplitude, 
unsteady velocity disturbances imposed upstream (see 
Fig. 1). The mean flow is a uniform parallel flow in the x 
direction, and they direction is taken to be perpendicular to 
the airfoil. Now from conditions (12) and (13) we conclude 
that u, must be of the form 

u=u,+vq5, (11) Ul=Ul(X--clGY) (18) 
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FIG. 1. Flat plate Airfoil in a transverse gust. 

and that the upstream disturbances are convected by the 
mean flow. Here 

u, = we., + ve.,., (19) 

where w and v must be chosen to satisfy the divergence free 
condition (12). The unsteady velocity u must satisfy u --) u, 
as x + -co. Therefore 4 must satisfy 

vq3-t0 as x-+-cc. (20) 

At the airfoil surface, the normal component of the 
velocity must vanish. This leads to the requirement that 

(21) 

In the wake behind the airfoil 4 is not continuous but 
must satisfy a jump condition determined by the continuity 
of the unsteady pressure. Applying (15) on each side of the 
vortex sheet behind the airfoil leads to the condition 

where Ad is the jump in 4 across the wake. 

2.3. Nondimensionalization of the Problem 

For computational purposes it is convenient to non- 
dimensionalize the problem. We therefore introduce the 
following normalization. Let 

vo 
T=!/2t 

(23) 

X 

x=iji (24) 

Y 
y=l;z (25) 

CO c=--. (26) 
00 

In the above nondimensionalization, 1 is the chord length 

of the airfoil. Denoting T. X, Y by f, x, and ,\ Liparn, 
respectively, the problem takes the form 

(“$h 
s’2 ~+~=c2v2q5 

governing equation (27) 

$A~+~A#=o in the wake 

r:+$p=O 
ay 

airfoil surface (29) 

vq.h-+o as .x--t --cc-. (30) 

Note that the quantity c is now the inverse Mach number of 
the mean flow. 

3. ABSORBING BOUNDARY CONDITIONS 

The boundary value problem prescribed in Eqs. (27k 
(30) is an open domain problem. In order to obtain numeri- 
cal solutions to this problem it is necessary to truncate the 
domain onto a finite region as shown in Fig. 2. Because we 
consider only flat plate airfoils with zero thickness, the solu- 
tion 4 is an odd function with respect to y. Therefore it is 
only necessary to solve the problem in the upper half plane. 
The computational domain is the rectangular region defined 
by C-L Ll x CO, HI. 

Because the open domain problem has been truncated 
onto a finite region with fixed boundaries and since the 
gust response problem is essentially a wave propagation 
problem, it is necessary to derive far field boundary condi- 
tions which allow outgoing acoustic waves to pass through 
the far field boundary without being reflected back into the 
computational domain. Since the governing equation is a 
convective wave equation, and not the regular wave equa- 
tion, there are difficulties in deriving nonreflecting far field 
boundary conditions. We shall present an approach due to 
[22] which is used in our computations, and we will now 
describe this approach in detail. 

Generalization of the ideas to follow are found in 
Hariharan and Hagstrom [22]. This procedure has 

(-L*H) ..:..:-..‘.,‘, ARTIFIC-L &~no;ARj : ,’ .::.. 
.,. : 

.‘.. ; : ‘,., ., (L,H) 
., I, : 

,.,_ ‘..‘, 
.: ./ .i:,‘,’ 

‘. :. 1  . . 
. . . .,._ ”  
..,. “:: ,; 

.: ,‘,, .,( ,’ 
. . :. ; “’ ,, 

: ‘. 
‘_::‘. 

.’ :. 

.:. 
:. 
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(-L,o) ':. : :. .‘.. ,_ 
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'(L,O) 

AIRFOIL 

FIG. 2. Computational domain. 
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similarities to that of Bayliss and Turkel [20], but is 
obtained through a systematic derivation and has general 
validity. The condition which is developed in [20] was used 
for prescribing an outflow condition, whereas the condi- 
tions developed in [22] are valid on the entire far field 
boundary. 

To present the ideas, we consider the convective wave 
equation (27). The idea has both a geometrical and an 
algebraic point of view. The geometrical view is that we seek 
a transformation in which the waves at infinity are cylindri- 
cal with respect to a moving source convected along the x 
axis with a speed unity. We shall now describe this process. 

Suppose we consider a wave front at a time t = f*. From 
time t = 0 to this time a source in the flow is convected a dis- 
tance t*. The signals would have propagated to a distance 
ct*. Thus the first step in deriving the transformation we 
seek is to develop a relation between t* and ct* with respect 
to a fixed observer. This is depicted in Fig. 3. 

In this figure, if we label the distance from the origin to 
the wave front by i?t*, we obtain 

x=+1-2Rcoso=c2. (31) 

Solving for fi we obtain 

l?(e) = cos 8 +_ Jm. (32) 

We conclude on the basis of the behavior near 9 = 0 and 
8 = n: that only the positive sign is valid. 

Thus the desired transformation in which the cylindrical 
properties are obtained is 

The interpretation is that at I = j(0) t*, i = t* = constant, 
the wave front is cylindrical. 

FIG. 3. Wave front with respect to a moving source. 

Now in the new coordinate system (i, d), which we call 
the wave front coordinate system, one can represent the 
solution in the far field following Friedlander [7] in an 
asymptotic form. That is, 

~J-W, 0) 
-l/Z . r (34) 

From this, we obtain a radiation boundary condition that is 
similar to the one that is reported in [ 11, which is 

Thus the desired boundary condition is a translation of (35) 
in the original coordinate system. This results in the 
boundary condition 

S(B)(,+d,+~=O, (36) 

where S(0) = l/&e). This condition is implemented in the 
results reported in the present paper. The origin is chosen to 
be the center of the airfoil. In the numerical calculations this 
is implemented as 

d,+ $j Ccos(t’)~,+sin(e)(,l+~=O. (37) 

We remark here that, in contrast to the geometric deriva- 
tion given above, the transformation (32) can also be 
obtained algebraically by solving the Eikonal equation 
corresponding to (27) which is 

1 - 2e, + CJ’, = c2(a; + 02). 

4. NUMERICAL SCHEME AND STABILITY 

4.1. Basic Scheme and the Stability Constraint 

The indices used in our numerical calculations are i and 
j, where i varies from 0 to M along the x axis and j varies 
from 0 to N along the y axis. The index n is used to denote 
values as the time n At, where At is the time step. The grid 
spacing in the x and y directions is denoted by Ax and dy, 
respectively. 

Unlike the regular wave equation, the convective wave 
equation yields difficulties in obtaining accurate schemes 
due to the presence of the mixed derivative term +,,. 
A scheme that is second-order accurate in space and in 
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time was obtained using the following finite difference 
approximations: 

(39) 

i 
4At Ax (40) 

(42) 

Note that all the second-order derivatives are evaluated 
using the standard central difference formula except the 
mixed derivative term. Here we use upwinding, as the 
central difference formula cannot be used for the mixed 
derivative term, since it results in an unstable scheme. It can 
be shown that the truncation error corresponding to this 
term is given by 

ERRORTruncation = - 12 rttt At24 -$Lx 

= O(At’, Ax2, Ay2). (43) 

Substituting Eqs. (39)-(42) into (27), we obtain the 
numerical scheme 

$h;f’-2qvj+(q)’ 

+ 0.5R(3d;f ’ - 4#?:, / + dITd,j 

- 34:; ’ + 4drZi,~ - #:I:, j) 

+ (1 - c2) R’(d’+ ,,, - 24;, + &- L,) 

-C2R2(d;j+ I -24;,+4:j-,)=o (44) 

where 

To discuss the stability of the scheme we let the error term 
be the form 

Ei,=A<e . f hAxleiPAyj (45) 

Substituting into (44) we obtain the error equation 

<‘( 1 + 1.5R - 2Re rrrJi +0.5Re ““.‘) 

t-t -2+4(c’- 1) R2sin2 

+(l-1.5R+2Re ~i5Lnr-0.5Reei2”d-‘)=0. 

(46) 

We solve this equation numerically for all possible c1 Ax and 
/I Ay for fixed R and c, and find that the roots of the equa- 
tion are all within the unit circle if the following stability 
criteria are satisfied: for M, = 0.8, R < 0.15; for M, = 0.5, 
R ~0.12, where M, = l/c. 

Note that there are fictitious points, namely those points 
atj= -l,j=N+l, i= -2, -1, and i=M+ 1. Thus, the 
scheme given by Eq. (48) is valid only in the interior 
domain, and special treatment is required on the grid line 
corresponding to i = 1 near the upstream boundary (i = 0). 

4.2. Numerical Differencing Scheme 

The finite difference equations used to model the 
governing equation and various boundary conditions are 
presented below. 

Upstream boundary. The calculation is begun at the left 
boundary, where the boundary condition is 

d*+1 
S(Q) 

[Icost@ 4; + sin(Q 4,1+ 4 -=o. (47) 
2rS(B) 

The differencing used at the left boundary is obtained using 
the notations 

(r)0,, = J4 + YJ’ 

(cos(8)), , = 3 
ro, / 

(48) 

(49) 

1 -=LA+J. 
S(e) So,, ro,, 

(51) 

The finite difference equation for the boundary i = 0 is then 
given by 
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f&; ' = l 
The finite difference approximation is then 

1 + At/4rS, j 4,jeL 
2ro. jso, j 

1 

j=l toN-1. (52) 

Airfoil surface. At the surface of the airfoil the boundary 
condition is 

u+a~jay=o. (53) 

The corresponding difference equation is 

qyo’ 1 = f(4C$;;’ - 0;: ’ + 2ui,0 ‘Y), 

i=M, to MZ,j=O, (54) 

where Ml is the i index of the grid point at the airfoil leading 
edge and where M, is the i index of the grid point at the 
trailing edge. 

Top boundary. On the top boundary the far field 
boundary condition is 

where the difference approximations are 

q$$’ = 1 

1 + (ON- ,lr+ 1 S,+,)+ (AW-i,N-lSi,N-l) 

(6::,‘+4:,;‘*-6:,,‘, 

R 
r I, N ~ 1 si, N - 1 

(56) 

for i= 1 to M- l,j= N. 

Downstream boundary. At the downstream boundary 
the far field condition is 

for i=M, j= 1 to N- 1. 

Wake boundary and corner points. For the wake bound- 
ary condition, we make use of the fact that C$ is an odd func- 
tionofy,sothatA#=d+-d-=2$+,where”+”and“-” 
denote quantities above and below the wake, respectively. 
The wake boundary condition (28) then becomes 

$p++-&j+ =o, 

and the difference equation is 

(59) 

4;; ' = 4;; ' - NC+ 1.0 - K 1.0) 

for i=M,toM-l,j=O. (60) 

For the last grid point in the wake (i = M, j = 0), we use 

4 n+l_ 
M,O -& cdnM,o+~nM~l,o-e4+~l.o 

+ W&L’,,, + $“,- 1.0 - d”,,o)l. (61) 

Last, for the corner points #M,N, do,,, we just take 4 to be 
the average value of the two nearby points, i.e., 

5. CALCULATION OF THE UNSTEADY 
RESPONSE FUNCTION 

#,+-1_ rs(e) 
(57) 

For purposes of comparing numerical results with known 
solutions to the thin airfoil, gust response problems, we 
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FIG. 4. ( 

introduce (following Sears 
function 

R(k, 7 Mm 

t 

aussian pulse. 

[23]) the unsteady response 

where L is the unsteady lift, and k, (k, = v1/2v,, where v is 
the angular frequency of the incident disturbance) is the 
reduced frequency. The lift is calculated by integrating the 
unsteady pressure over the surface of the airfoil. 

Since we solve the problem in the time domain, and not 

0 ““““~““‘n”‘r 
-5 -4 -3 -2 -1 0 1 2 3 4 5 

0 

FIG. 5. Fourier transform off(f). 

the frequency domain, we obtain the response function 
through the use of the Fourier transform. The upstream 
velocity disturbance is taken to be a wide band Gaussian 
pulse, and we obtain the airfoil response as a function of the 
reduced frequency as explained below. 

Suppose that the value of the disturbance u(.Y, y: f) at the 
center of the airfoil is ,I’( t). Then the time spectrum of this 
disturbance will be 

F(w) =-& s +:/It) drrurJ dr. (65) 

The response of the airfol to the disturbance will be 

L,(t) 
g(t)=- npcv,’ (66) 

where the lift L(t) is 

L(t)=/ p(t)&. (67) 
r 

By taking the Fourier transformation of g( t), we obtain the 
representation of g(t) in the frequency domain G(w), and 
the frequency response function of the airfoil is 

G(w) R(o) = - 
F(o)’ 

(68) 

For example, let us consider the case where 

f(t)=J2ae(- a? (69) 

I.01 I 1 I I I ,. , I, I1I, ,, .I 

.8 - 

.6 - 

z 

.4 - 

.2 - 

o- 
-10 

Ll 
0 

t 
FIG. 6. Response function. 
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1.4 - 

- REAL 
------- IMAGINARY 

1.0 - 

-.6"""""""""" 
-5 -4 -3 -2 -1 0 1 2 3 4 5 

0 

FIG. 7. Fourier transform of g(t). 

The spectrum off(t) is then 

F(0)=e'-"2/4"), (70) 

and the pulse function (disturbance) for the problem under 
consideration at time t and at a point x isf(t - x). 

The numerical integration involved in evaluating the 
transforms F(o) and G(w) depends on the value of the 
amplitude a. For example, for a value of a = 4, Fig. 4 shows 
the behavior off(t). Since the decay rate of this function is 

II = 0.5 
DOMAIN (15x10) .2 

i-4 x POSSIO SOLVER 

.l 
. CURRENT RESULTS 

i 

e.5: 
-.2 0 .2 .4 .6 .t? 1.0 1.2 1.4 1.6 1.8 

REAL LIFT 

FIG. 8. Comparison between the numerically computed unsteady FIG. 9. Comparison between the numerically computed unsteady 
response function and analytical results from a Possio solver. response function and analytical results from a Possio solver. 

fast, one may choose a time interval of the form [ - T,, To]. 
A typical value of r,, for our grids was 6.975. The corre- 
sponding transformation is given in Fig. 5. For numerical 
purposes, the index for the time begins at t = - T, so that 
n = 0 corresponds to t = - T,,. At the time level n= 4000, 
the pulse has passed the airfoil and the response function of 
g(t) tends to zero. Therefore this is a good place to truncate 
the response function g(t) numerically. We can then 
calculate its Fourier transformation G(o) very easily using 
Riemann sums. The response function g(t) and its trans- 
forms are given in Fig. 6 and 7, respectively. Finally, using 
(68), we obtain the frequency response function R(w). The 
various frequency response functions given in Figs. 8-l 3 are 
obtained by plotting Re[R(o)] vs Im[R(w)]. 

6. RESULTS AND DISCUSSION 

6.1. Comparison of Numerical Results with Known Solutions 

In order to assess the accuracy of the present numerical 
scheme, we compare computed numerical results with 
known solutions to the thin airfoil gust response problem. 
Because the stability constraint of our scheme depends on 
the Mach number, we are limited to calculating cases for 
which the Mach number is not small. For comparison pur- 
poses we present results for Mach numbers of 0.5 and 0.8. 

Figure 8 shows a comparison between analytical results 
obtained from a Possio [24] solver and numerical results 
obtained from the present scheme for a 0.5 Mach number. 
The grid dimensions for the results shown in Fig. 8 were 15 
units in the streamwise direction and 10 units in the normal 
direction. The spacing in the x and y directions was uniform 

.2 - 

.l - 

m = 0.5 
DOMAIN (22.5~15) _ 

m POSSIO SOLVER 
. CURRENT RESULTS 

3 

-.3 - i 

-.4 - 

-.5-a',',"' c 1'1 '1 c 1 I I j 
-.2 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 

REAL LIFT 
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with Ax = Ay. There were 151 points in the x direction and 
101 points in the y direction. 

In Fig. 9 we make the same comparison as in Fig. 8, 
except that in this case the grid dimensions have been 
extended to 22.5 by 15. The number of grid points in each 
coordinate direction is the same as in Fig. 8, so that the 
spacing is slightly more coarse on this grid. The results 
shown in Fig. 10 were run on a still larger grid, with dimen- 
sions of 30 by 22.5, and 201 points in the x direction and 15 1 
points in they direction. 

By comparing the results shown in Figs. 8-10, it is seen 
that the agreement for the high frequencies is very good in 
all three cases. However, the agreement for reduced frequen- 
cies below about 0.3 is only fair. Note that the amount of 
error in the low frequency cases diminishes as the grid 
dimensions become larger. This suggests that a larger grid is 
required to adequately model the long wavelength 
disturbances. 

In Figs. 11-13 we present results for the case of an 0.8 
Mach number. The grids used for these figures correspond 
to the grids used in Figs. 8-10, respectively. The agreement 
for the 0.8 Mach number case is analogous to the agreement 
for the 0.5 Mach number case, and again we see that the 
accuracy for lower frequencies is considerably improved on 
the larger grids. 

6.2. Comparison of the Present Scheme with the Fre- 
quency Domain Approach of Scott and Atassi 

Scott and Atassi [ 141 have reported the development of 
a general frequency domain numerical scheme for the solu- 
tion of periodic vertical flows around isolated airfoils. Their 
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FIG. 10. Comparison between the numerically computed unsteady 
response function and analytical results from a Possio solver. 
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FIG. 11. Comparison between the numerically computed unsteady 
response function and analytical results from a Possio solver. 

scheme has wide applicability to many different flow 
configurations and was recently extended to handle the 
difficult problem of vertical flows around lifting airfoils in 
subsonic flows [lo, 151. In the present section we compare 
the present time domain numerical scheme with their 
frequency domain approach as specialized to the case of flat 
plate airfoils. 

There are two main disadvantages to the frequency 
domain approach reported in [ 141. First, in the frequency 
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FIG. 12. Comparison between the numerically computed unsteady 
response function and analytical results from a Possio solver. 
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FIG. 13. Comparison between the numerically computed unsteady 
response function and analytical results from a Possio solver. 

domain formulation it is necessary to solve the gust 
response problem in terms of discrete frequencies. For dis- 
turbances that contain many harmonics, many calculations 
would be necessary, and the frequency domain approach 
would be inefficient. Second, there is a loss of accuracy and 
an increase in solution times required for the higher frequen- 
cies. This makes the frequency domain approach ill-suited 
for reduced frequencies that are in the range of 10 or higher. 

There are, nonetheless, significant advantages to the 
frequency domain approach reported in [ 141. First, it is 
very accurate for a large range of frequencies, including the 
very lowest frequencies. Their scheme can be used for 
both incompressible and compressible flows and has been 
validated for three-dimensional gusts. In addition, the 
unsteady grid and far field boundary condition are ideally 
suited for acoustic wave propagation, so that the far field 
acoustics can be accurately and readily determined from the 
solution. 

The chief advantages of the time domain scheme 
presented in this paper are that the scheme is very accurate 
at the higher frequencies and that it can handle general 
vertical disturbances without solving the problem in terms 
of discrete frequencies. The main disadvantages of the 
present approach are the loss of accuracy for the low 
reduced frequencies and the fact that it is not valid for low 
Mach number flows. 

In terms of computational and storage efficiency, both 
approaches are far superior to standard primitive variable 
solvers. They both can be efficiently run on a present day 
work station. Sample solution times for calculating an entire 

response function using the time domain approach range 
from 86 to 343 s on a Cray X-MP versus 60 to 1.50 s for the 
same calculation using the frequency domain appraoch. 

6.3. Conclusion 

In conclusion, the time domain numerical scheme which 
has been developed in the present paper is both storage and 
computationally efficient and can accurately calculate the 
high frequency response of a flat plate airfoil in compressible 
flow to a transverse gust. Improvements are still needed in 
the accuracy of the calculation at the lower frequencies and 
in the selection of a more suitable computational grid. 

In as much as nonlinear equations such as the Euler equa- 
tions are usually solved using time marching procedures, it 
is hoped that the present time domain solution procedure 
for the linearized, unsteady Euler equations will illuminate 
some of the issues involved in time domain calculations for 
unsteady flows. 

1. 

2. 

3. 

4. 

5. 

6. 

I. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

REFERENCES 

W. F. Ballhaus and P. M. Goorjian, AIAA J. 15, 1728 (1977). 

P. M. Goorjian, “Implicit Computations of Unsteady Transonic Flow 
Governed by the Full Potential Equation in the Conservation Form,” 
AIAA Paper 80-0150, 1980 (unpublished). 

N. L. Sankar, J. B. Malone, and Y. Tassa, “An Implicit Conservative 
Algorithm for Steady and Unsteady Three Dimensional Transonic 
Flows,” AIAA Paper 81-1016, Palo Alto, CA, 1981 (unpublished). 

P. M. Goorjian, and G. P. Guruswamy, “Unsteady Transonic 
Aerodynamic and Aeroelastic Calculations About Airfoils and Wings,” 
NASA TM 85986, 1984 (unpublished). 

J. M. Verdon and J. R. Caspar, J. Fluid Mech. 149,403 (1984). 

W. J. McCroskey and P. M. Goorjian, “Interactions of Airfoils with 
Gusts and Concentrated Vortices in Unsteady Transonic Flow,” AIAA 
Paper 83-1691, 1983 (unpublished). 

W. J. McGroskey, J. Aircraft 22 (3), 236 (1985). 

M. E. Goldstein and H. M. Atassi, J. Fluid Mech. 74, 741 (1976). 

H. M. Atassi, J. Fluid Mech. 141, 109 (1984). 

J. R. Scott and H. M. Atassi, “Numerical Solutions of the Linearized 
Euler Equations for Unsteady Vertical Flows Around Lifting Airfoils,” 
AIAA Paper 90-0694, 1990 (unpublished). 

J. R. Scott, “Compressible Flows with Periodic Vertical Disturbances 
Around Lifting Airfoils,” Ph.D. dissertation, University of Notre 
Dame, April 1990 (unpublished). 

M. E. Goldstein, J. Fluid Mech. 89 (3), 433 (1978). 

H. M. Atassi and J. Grzedzinski, J. Fluid Mech. 209, 385 (1989). 

J. R. Scott and H. M. Atassi, “Numerical Solution of Periodic 
Vertical Flows about a Thin Airfoil,” AIAA Paper 89-1691, 1989 
(unpublished). 

J. R. Scott and H. M. Atassi, in Proceedings, Computational Fluid 
Dynamics Symposium on Aeropropulsion, Cleveland, Ohio, 1990, NASA 
Conference Publication 10045 (unpublished). 

B. E. Engquist and S. J. Osher, Math. Comput. 34, 149, 45 (1980). 



430 HARIHARAN, PING, AND SCOTT 

17. 

18. 

19 

W. Whitlow, Jr., “XTRANZL: A Program for Solving the General- 
Frequency Unsteady Transonic Small Disturbance Equation,” NASA 
TM 85723, 1983 (unpublished). 

H. M. Atassi, in Proceedings qf the Tenth U.S. National Congress qJ‘ 
Applied Mechanics, 1986, edited by J. P. Lamb (ASME, New York, 
1986) 475. 

H. M. Atassi and J. R. Scott, in Proceedings of lhe Fourth International 
Symposium on Unsteady Aerodynamics and Aeroelasticity of 
Turbomachines and Propellers, Aachen, Germany, 1988, edited by 
H. E. Gallus and S. Servaty (Institute fur Strahlantriebe und 
Turbomachine, University of Aachen, Aachen), 39. 

20. A. Bayliss and E. Turkel, J. Comput. Phw. 48, 7 (1982). 
21. F. G. Friedlander. Proc. R. Sot. Londorr Ser. A. 269 ( l962). 

22. S. I. Hariharan and T. Hagstrom, “Far Field Expansion\, for 
Anisotropic Wave Equations,” Proceedings of rhe 2nd IMA (‘.I‘ 
Symposium on Computational Acou.~rics. Princeton. h’.J, IWO, edited 
by D. Lee r/ nl. 

23. W. R. Sears, J. Arrosp. Sci. 81 (3) 104 (1941). 

24. C. Possio, “L’Azione Aerodynamica sul Prolilo Oscillante in un I’luido 
Compressible a Velocita Ipsonara.” L’Aerotechnicu 18 (4) (193X) 


